Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.457
Filtrar
1.
Rev. neurol. (Ed. impr.) ; 78(7): 199-207, Ene-Jun, 2024. ilus, graf
Artigo em Espanhol | IBECS | ID: ibc-232186

RESUMO

Introducción: El neurocientífico español Justo Gonzalo y Rodríguez-Leal (1910-1986) investiga la organización funcional de la corteza cerebral durante más de cuatro décadas. Sus hallazgos le llevan a formular una teoría neurofisiológica basada en las leyes de la excitabilidad nerviosa, que denomina dinámica cerebral. En el presente trabajo se expone de forma cronológica cómo surgen las principales ideas sobre las que se articula.Desarrollo: En 1939 Gonzalo observa los denominados fenómenos de acción dinámica: desfasamiento, facilitación y repercusión cerebral. Le siguen dos principios: efecto cerebral de la lesión según la magnitud y posición (1941), y organización sensorial, según un desarrollo espiral (1947). Paralelamente, caracteriza lo que llama el síndrome central de la corteza cerebral. En la década de los cincuenta desarrolla los conceptos de gradiente cortical, similitud y alometría. En contraposición a las concepciones modulares de la corteza cerebral, en las que una región es responsable de una función, Gonzalo expresa que ‘los gradientes corticales dan la localización de los sistemas mientras la similitud y alometría revelan su trama funcional’.Conclusiones: La teoría de dinámica cerebral se articula en dos etapas. La primera (de 1938 a 1950) se caracteriza por una importante base clínica con observación de nuevos fenómenos y formulación de nuevos conceptos. La segunda (de 1950 a 1960) incluye la introducción de conceptos de mayor alcance, como el gradiente funcional cortical, y leyes de alometría que se basan en un cambio de escala. Actualmente, varios autores consideran que el concepto de gradiente es clave para entender la organización cerebral.(AU)


Introduction: The Spanish neuroscientist Justo Gonzalo y Rodríguez-Leal (1910-1986) investigated the functional organisation of the cerebral cortex over more than four decades. His findings led him to formulate a neurophysiological theory based on the laws of nervous excitability, which he called brain dynamics. This paper presents in chronological order how the main ideas on which it is based arose.Development: In 1939, Gonzalo observed the phenomena of dynamic action: asynchrony or disaggregation, facilitation and cerebral repercussion. This was followed by two principles: the cerebral effect of lesions according to their magnitude and position (1941), and spiral development of the sensory field (1947). At the same time, he characterised what he called the central syndrome of the cerebral cortex. In the 1950s he developed the concepts of the cortical gradient, similarity and allometry. In contrast to modular conceptions of the cerebral cortex, in which one region is responsible for one function, Gonzalo argued that ‘cortical gradients provide the location of systems, while similarity and allometry reveal their functional mechanism.’Conclusions: The theory of brain dynamics was established in two stages. The first (between 1938 and 1950) had an important clinical foundation, involving the observation of new phenomena and the formulation of new concepts. The second (between 1950 and 1960) included the introduction of more far-reaching concepts, such as the functional cortical gradient, and allometry laws based on a change of scale. Today, various authors believe that the concept of the gradient is crucial for understanding how the brain is organised.(AU)


Assuntos
Humanos , Masculino , Feminino , Córtex Cerebral , Córtex Cerebral/anatomia & histologia , Neurologia/história , Cérebro/anatomia & histologia , Neurofisiologia
2.
J Comp Neurol ; 532(3): e25607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501930

RESUMO

Many predatory animals, such as the praying mantis, use vision for prey detection and capture. Mantises are known in particular for their capability to estimate distances to prey by stereoscopic vision. While the initial visual processing centers have been extensively documented, we lack knowledge on the architecture of central brain regions, pivotal for sensory motor transformation and higher brain functions. To close this gap, we provide a three-dimensional (3D) reconstruction of the central brain of the Asian mantis, Hierodula membranacea. The atlas facilitates in-depth analysis of neuron ramification regions and aides in elucidating potential neuronal pathways. We integrated seven 3D-reconstructed visual interneurons into the atlas. In total, 42 distinct neuropils of the cerebrum were reconstructed based on synapsin-immunolabeled whole-mount brains. Backfills from the antenna and maxillary palps, as well as immunolabeling of γ-aminobutyric acid (GABA) and tyrosine hydroxylase (TH), further substantiate the identification and boundaries of brain areas. The composition and internal organization of the neuropils were compared to the anatomical organization of the brain of the fruit fly (Drosophila melanogaster) and the two available brain atlases of Polyneoptera-the desert locust (Schistocerca gregaria) and the Madeira cockroach (Rhyparobia maderae). This study paves the way for detailed analyses of neuronal circuitry and promotes cross-species brain comparisons. We discuss differences in brain organization between holometabolous and polyneopteran insects. Identification of ramification sites of the visual neurons integrated into the atlas supports previous claims about homologous structures in the optic lobes of flies and mantises.


Assuntos
Cérebro , Baratas , Mantódeos , Animais , Drosophila melanogaster , Telencéfalo , Encéfalo , Drosophila
3.
Int. j. clin. health psychol. (Internet) ; 24(1): [100426], Ene-Mar, 2024. ilus, tab
Artigo em Inglês | IBECS | ID: ibc-230366

RESUMO

Background: Emerging research supports the idea that physical activity benefits brain development. However, the body of evidence focused on understanding the effects of physical activity on white matter microstructure during childhood is still in its infancy, and further well-designed randomized clinical trials are needed. Aim: This study aimed: (i) to investigate the effects of a 20-week physical activity intervention on global white matter microstructure in children with overweight or obesity, and (ii) to explore whether the effect of physical activity on white matter microstructure is global or restricted to a particular set of white matter bundles. Methods: In total, 109 children aged 8 to 11 years with overweight or obesity were randomized and allocated to either the physical activity program or the control group. Data were collected from November 2014 to June 2016, with diffusion tensor imaging (DTI) data processing and analyses conducted between June 2017 and November 2021. Images were pre-processed using the Functional Magnetic Resonance Imaging (MRI) of the Brain´s Software Library (FSL) and white matter properties were explored by probabilistic fiber tractography and tract-based spatial statistics (TBSS). Results: Intention-to-treat analyses were performed for all children who completed the pre-test and post-test DTI assessment, with good quality DTI data (N = 89). Of them, 83 children (10.06±1.11 years, 39 % girls, intervention group=44) met the per-protocol criteria (attended at least 70 % of the recommended sessions). Our probabilistic fiber tractography analysis did not show any effects in terms of global and tract-specific fractional anisotropy (FA) and mean diffusivity (MD) in the per-protocol or intention-to-treat analyses. Additionally, we did not observe any effects on the voxel-wise DTI parameters (i.e., FA and MD) using the most restricted TBSS approach (i.e., per protocol analyses and p-corrected image with a statistical...(AU)


Assuntos
Humanos , Masculino , Feminino , Criança , Exercício Físico , Substância Branca , Sobrepeso , Obesidade Pediátrica , Estilo de Vida , Cérebro , Psicologia , Psicologia Clínica , Saúde da Criança
4.
Surg Radiol Anat ; 46(3): 303-311, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38376527

RESUMO

BACKGROUND: Understanding and teaching the three-dimensional architecture of the brain remains difficult because of the intricate arrangement of grey nuclei within white matter tracts. Although cortical area functions have been well studied, educational and three-dimensional descriptions of the organization of deep nuclei and white matter tracts are still missing. OBJECTIVE: We propose herein a detailed step-by-step dissection of the lateral aspect of a left hemisphere using the Klingler method and provide high-quality stereoscopic views with the aim to help teach medical students or surgeons the three-dimensional anatomy of the brain. METHODS: Three left hemispheres were extracted and prepared. Then, according to the Klingler method, dissections were carried out from the lateral aspect. Photographs were taken at each step and were modified to provide stereoscopic three-dimensional views. RESULTS: Gray and white structures were described: cortex, claustrum, putamen, pallidum, caudate nucleus, amygdala; U-fibers, external and internal capsules, superior longitudinal fasciculus, frontal aslant fasciculus, uncinate fasciculus, inferior fronto-occipital fasciculus, inferior longitudinal fasciculus, corticospinal fasciculus, corona radiata, anterior commissure, and optic radiations. CONCLUSION: This educational stereoscopic presentation of an expert dissection of brain white fibers and basal ganglia would be of value for theoretical or hands-on teaching of brain anatomy; labeling and stereoscopy could, moreover, improve the teaching, understanding, and memorizing of brain anatomy. In addition, this could be also used for the creation of a mental map by neurosurgeons for the preoperative planning of brain tumor surgery.


Assuntos
Cérebro , Substância Branca , Humanos , Encéfalo/anatomia & histologia , Substância Branca/diagnóstico por imagem , Substância Branca/anatomia & histologia , Cérebro/anatomia & histologia , Dissecação/métodos , Fibras Nervosas
5.
Int J Mol Sci ; 25(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38256071

RESUMO

Patients with COVID-19 have been reported to experience neurological complications, although the main cause of death in these patients was determined to be lung damage. Notably, SARS-CoV-2-induced pathological injuries in brains with a viral presence were also found in all fatal animal cases. Thus, an appropriate animal model that mimics severe infections in the lungs and brain needs to be developed. In this paper, we compared SARS-CoV-2 infection dynamics and pathological injuries between C57BL/6Smoc-Ace2em3(hACE2-flag-Wpre-pA)Smoc transgenic hACE2-C57 mice and Syrian hamsters. Importantly, the greatest viral distribution in mice occurred in the cerebral cortex neuron area, where pathological injuries and cell death were observed. In contrast, in hamsters, viral replication and distribution occurred mainly in the lungs but not in the cerebrum, although obvious ACE2 expression was validated in the cerebrum. Consistent with the spread of the virus, significant increases in IL-1ß and IFN-γ were observed in the lungs of both animals. However, in hACE2-C57 mice, the cerebrum showed noticeable increases in IL-1ß but only mild increases in IFN-γ. Notably, our findings revealed that both the cerebrum and the lungs were prominent infection sites in hACE2 mice infected with SARS-CoV-2 with obvious pathological damage. Furthermore, hamsters exhibited severe interstitial pneumonia from 3 dpi to 5 dpi, followed by gradual recovery. Conversely, all the hACE2-C57 mice experienced severe pathological injuries in the cerebrum and lungs, leading to mortality before 5 dpi. According to these results, transgenic hACE2-C57 mice may be valuable for studying SARS-CoV-2 pathogenesis and clearance in the cerebrum. Additionally, a hamster model could serve as a crucial resource for exploring the mechanisms of recovery from infection at different dosage levels.


Assuntos
COVID-19 , Cérebro , Humanos , Cricetinae , Camundongos , Animais , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Enzima de Conversão de Angiotensina 2/genética , Camundongos Transgênicos , Interleucina-1beta , Mesocricetus , Pulmão
6.
Neurosci Res ; 200: 1-7, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37866527

RESUMO

The human cerebrum contains a large amount of cortico-cortical association fibers. Among them, U-fibers are short-range association fibers located in white matter immediately deep to gray matter. Although U-fibers are thought to be crucial for higher cognitive functions, the organization within U-fiber regions are still unclear. Here we investigated the properties of U-fiber regions in the ferret cerebrum using neurochemical, neuronal tracing, immunohistochemical and electron microscopic techniques. We found that U-fiber regions can be subdivided into two regions, which we named outer and inner U-fiber regions. We further uncovered that outer U-fiber regions have smaller-diameter axons with thinner myelin compared with inner U-fiber regions. These findings may indicate functional complexity within U-fiber regions in the cerebrum.


Assuntos
Cérebro , Substância Branca , Animais , Humanos , Furões/fisiologia , Encéfalo , Bainha de Mielina , Axônios
7.
Environ Toxicol ; 39(3): 1163-1174, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37860879

RESUMO

Cadmium (Cd) as a ubiquitous toxic heavy metal is reported to affect the nervous system. Selenium (Se) has been shown to have antagonistic effects against heavy metal toxicity. In addition, it shows potential antioxidant and anti-inflammatory properties. Thus, the purpose of this study was to determine the possible mechanism of brain injury after high Cd exposure and the mitigation of Nano-selenium (Nano-Se) against Cd-induced brain injury. In this study, the Cd-treated group showed a decrease in the number of neurons in brain tissue, swelling of the endoplasmic reticulum and mitochondria, and the formation of autophagosomes. Nano-Se intervention restored Cd-caused alterations in neuronal morphology, endoplasmic reticulum, and mitochondrial structure, thereby reducing neuronal damage. Furthermore, we found that some differentially expressed genes were involved in cell junction and molecular functions. Subsequently, we selected eleven (11) related differentially expressed genes for verification. The qRT-PCR results revealed the same trend of results as determined by RNA-Seq. Our findings also showed that Nano-Se supplementation alleviated Cx43 phosphorylation induced by Cd exposure. Based on immunofluorescence colocalization it was demonstrated that higher expression of GFAP and lower expressions of Cx43 were restored by Nano-Se supplementation. In conclusion, the data presented in this study establish a direct association between the phosphorylation of Cx43 and the occurrence of autophagy and neuroinflammation. However, it is noteworthy that the introduction of Nano-Se supplementation has been observed to mitigate these alterations. These results elucidate the relieving effect of Nano-Se on Cd exposure-induced brain injury.


Assuntos
Lesões Encefálicas , Cérebro , Selênio , Humanos , Selênio/farmacologia , Cádmio/toxicidade , Conexina 43/metabolismo , Conexinas/metabolismo , Fosforilação , Cérebro/metabolismo
8.
Neurol Sci ; 45(3): 1311-1313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38049549

RESUMO

This article reports a case of Mills' syndrome that initially manifested as atrophy of one cerebral hemisphere and decreased brain metabolism, which developed into amyotrophic lateral sclerosis in the fourth year of the disease. Mills' syndrome is a rare type of motor neuron disease, with only over 20 cases reported since 1990, but most lack imaging such as PET and DTI. This article provides a complete report of the 18F-FDG-PET and DTI images consistent with the characteristics of Mills' syndrome. In addition, we have discovered some new phenomena, which have certain clinical and teaching values. Firstly, the frontal, parietal and temporal lobes on the side of the lesion in the pyramidal tract of this patient were significantly atrophic, indicating that unilateral brain lobe atrophy may be a new feature of Mills' syndrome. Secondly, although there were no abnormalities in three EMG tests taken during the 4 years prior to the onset of the disease, amyotrophy and ALS-like EMG features appeared in the fourth year, suggesting that some Mills' syndrome may progress more rapidly to ALS. This highlights the importance of regular follow-up electromyography in Mills' syndrome patients.


Assuntos
Esclerose Amiotrófica Lateral , Cérebro , Doença dos Neurônios Motores , Humanos , Esclerose Amiotrófica Lateral/complicações , Esclerose Amiotrófica Lateral/diagnóstico por imagem , Esclerose Amiotrófica Lateral/patologia , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Doença Crônica , Atrofia/patologia , Atrofia Muscular
9.
Anat Histol Embryol ; 53(1): e13000, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994610

RESUMO

Studies on brain anatomy can clarify specific evolutionary and behavioural aspects of wild animals. The rich diversity in a broad range of habitats makes carnivorans especially eligible for studying the relations between the brain form and behaviour, cognitive, sensorial and motor traits. This study compared the brain's contour and total and segmented brain volumetry in three species of neotropical carnivorans. CT images of 17 skulls of three species were acquired: Conepatus chinga (n = 6), Galictis cuja (n = 6) and Lontra longicaudis (n = 5). Three-dimensional endocasts allowed for estimating the brain's total and segmented volumes (olfactory bulb, rostral cerebrum, caudal cerebrum and cerebellum/brain stem). The average volume percentage of the segments was compared interspecifically and intraspecifically between the sexes. The otter has a notably more complex gyrification, typical for semiaquatic carnivorans. Proportionally, the olfactory bulb was significantly larger in hog-nosed skunks, possibly due to a better sense of smell for capturing insects. The proportional volumes of the rostral cerebrum, caudal cerebrum and cerebellum/brain stem segments did not differ between these species. Social behaviour traits and tactile, motor and balance skills were probably not sufficiently distinct to reflect differences in the brain segments analysed in these three species.


Assuntos
Encéfalo , Cérebro , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/anatomia & histologia , Animais Selvagens , Cérebro/anatomia & histologia , Crânio/diagnóstico por imagem , Crânio/anatomia & histologia , Tomografia Computadorizada por Raios X/veterinária
10.
Anat Histol Embryol ; 53(1): e12983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37822137

RESUMO

Stereology is a discipline that allows us to obtain quantitative information about the geometric structure of three-dimensional objects. In this study, the volume of grey matter (GM), white matter (WM), and lateral ventricle (LV) of the cerebral hemispheres (CH) in sheep and goats were calculated. For this purpose, six healthy male sheep and goat brains (1-2 years old) without any anomaly were used. Brains were fixed with 10% formaldehyde in the skull. The skull was opened using standard anatomical dissection methods, and the brains were carefully removed. Brain weight and volume were measured (using Archimedes' principle) after the meninges were removed. The cerebral hemispheres were separated from the other parts of the brain by a section made in front of the rostral colliculus. In the same way, the weight and volume of the cerebral hemispheres were measured. Afterward, the cerebral hemispheres were blocked with agar, and transversal cross sections (from rostral to caudal) with an average thickness of 3.42 mm were taken from the cerebral hemispheres. Grey matter was stained with Berlin blue macroscopic staining method. The stained cross sections were scanned at 600 dpi resolution, and a point counting grid was placed on the images with the ImageJ software. Cavalieri's principle calculated the surface area and volume measurements of the grey matter, white matter, and lateral ventricle. GM, WM, and LV volumes in sheep and goat cerebral hemispheres were calculated as 54.94, 21.48 and 3.06 mL in sheep, 57.46, 24.13 and 3.12 mL in goats, respectively. The percentages of these structures in the total hemisphere volume were 71.83%, 28.17% and 4.00% in sheep, 70.42%, 29.58% and 3.82% in goats, respectively. Asymmetry was not observed in cerebral hemispheres in both species. A difference was found in the WM, LV and LV: CH ratios in the right/left comparison of the goat (p < 0.05). In comparing sheep and goats, a significant difference was observed in WM right, WM left, WM total, CH left and CH total (p < 0.05). In conclusion, the cerebral hemispheres' grey matter and white matter ratio are frequently used to diagnose neurodegenerative diseases. In recent years, the increase in neurodegenerative disease models in farm animals has been enormous. It is thought that these values obtained from healthy animals in the current study will be important for such experimental studies in the future.


Assuntos
Cérebro , Doenças das Cabras , Doenças Neurodegenerativas , Doenças dos Ovinos , Substância Branca , Masculino , Animais , Ovinos , Substância Cinzenta , Ventrículos Laterais , Cabras , Doenças Neurodegenerativas/veterinária , Encéfalo , Imageamento por Ressonância Magnética
11.
Undersea Hyperb Med ; 50(4): 421-424, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055883

RESUMO

Introduction: Cerebral radiation necrosis is rarely encountered in pediatric patients. This case report describes a child with cerebral radiation necrosis who was successfully treated using corticosteroids, bevacizumab, and hyperbaric oxygenation. Case report: A 3-year-old boy developed progressive extremity weakness six months after the completion of radiation therapy for the treatment of a neuroepithelial malignancy. Treatment with corticosteroids and bevacizumab was initiated, but his symptoms did not improve, and he was then referred for hyperbaric oxygen therapy. After completing 60 hyperbaric treatments, he experienced significant improvements in mobility, which remained stable over the next year. Discussion: Cerebral radiation necrosis typically presents in children with symptoms of ataxia or headache. Corticosteroids and bevacizumab are common treatments, but hyperbaric oxygen therapy has also been studied as a therapeutic modality for this condition. When considering the use of hyperbaric oxygenation in pediatric patients, careful attention to treatment planning and patient safety can reduce the risks of adverse events such as middle ear barotrauma and confinement anxiety. Conclusion: In addition to other available pharmacologic therapies, hyperbaric oxygenation should be considered for the treatment of pediatric patients with cerebral radiation necrosis.


Assuntos
Lesões Encefálicas , Cérebro , Oxigenoterapia Hiperbárica , Lesões por Radiação , Pré-Escolar , Humanos , Masculino , Barotrauma/etiologia , Barotrauma/prevenção & controle , Bevacizumab/uso terapêutico , Oxigenoterapia Hiperbárica/efeitos adversos , Oxigenoterapia Hiperbárica/métodos , Necrose/etiologia , Necrose/terapia , Cérebro/patologia , Cérebro/efeitos da radiação , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Lesões Encefálicas/terapia , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Lesões por Radiação/terapia , Neoplasias Neuroepiteliomatosas/radioterapia
12.
Curr Biol ; 33(24): 5467-5477.e4, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38070503

RESUMO

Danionella cerebrum (DC) is a promising vertebrate animal model for systems neuroscience due to its small adult brain volume and inherent optical transparency, but the scope of their cognitive abilities remains an area of active research. In this work, we established a behavioral paradigm to study visual spatial navigation in DC and investigate their navigational capabilities and strategies. We initially observed that adult DC exhibit strong negative phototaxis in groups but less so as individuals. Using their dark preference as a motivator, we designed a spatial navigation task inspired by the Morris water maze. Through a series of environmental cue manipulations, we found that DC utilize visual cues to anticipate a reward location and found evidence for landmark-based navigational strategies wherein DC could use both proximal and distal visual cues. When subsets of proximal visual cues were occluded, DC were capable of using distant contextual visual information to solve the task, providing evidence for allocentric spatial navigation. Without proximal visual cues, DC tended to seek out a direct line of sight with at least one distal visual cue while maintaining a positional bias toward the reward location. In total, our behavioral results suggest that DC can be used to study the neural mechanisms underlying spatial navigation with cellular resolution imaging across an adult vertebrate brain.


Assuntos
Cérebro , Navegação Espacial , Animais , Aprendizagem em Labirinto , Encéfalo , Sinais (Psicologia) , Peixes , Percepção Espacial
14.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-226364

RESUMO

Objective: Attention Deficit/Hyperactivity Disorder (ADHD) negatively affects social functioning; however, its neurological underpinnings remain unclear. Altered Default Mode Network (DMN) connectivity may contribute to social dysfunction in ADHD. We investigated whether DMN's dynamic functional connectivity (dFC) alterations were associated with social dysfunction in individuals with ADHD. Methods: Resting-state fMRI was used to examine DMN subsystems (dorsal medial prefrontal cortex (dMPFC), medial temporal lobe (MTL)) and the midline core in 40 male ADHD patients (7-10 years) and 45 healthy controls (HCs). Connectivity correlations with symptoms and demographic data were assessed. Group-based analyses compared rsFC between groups with two-sample t-tests and post-hoc analyses. Results: Social dysfunction in ADHD patients was related to reduced DMN connectivity, specifically in the MTL subsystem and the midline core. ADHD patients showed decreased dFC between parahippocampal cortex (PHC) and left superior frontal gyrus, and between ventral medial prefrontal cortex (vMPFC) and right middle frontal gyrus compared to HCs (MTL subsystem). Additionally, decreased dFC between posterior cingulate cortex (PCC), anterior medial prefrontal cortex (aMPFC), and right angular gyrus (midline core) was observed in ADHD patients relative to HCs. No abnormal connectivity was found within the dMPFC. Conclusion: Preliminary findings suggest that DMN connectional abnormalities may contribute to social dysfunction in ADHD, providing insights into the disorder's neurobiology and pathophysiology. (AU)


Assuntos
Humanos , Transtorno do Deficit de Atenção com Hiperatividade/psicologia , Comportamento Social , Habilidades Sociais , Córtex Pré-Frontal , Cérebro/diagnóstico por imagem , Entrevistas como Assunto
15.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-226368

RESUMO

Mindfulness appears to improve empathy and understanding in relationships, which are necessary for successful cooperation. However, the impact of mindfulness on cooperation has not been fully studied. This study used hyperscanning technique to examine the effect of mindfulness on the inter-brain synchrony of interacting individuals during the cooperative tasks. Forty-one dyads were randomly assigned to a mindfulness group or a non-mindfulness group. Dyads of the mindfulness group performed a short mindfulness exercise following a 15-minute mindfulness audio guidance. Dyads of the non-mindfulness group were instructed to rest quietly with their eyes closed. Then, simultaneously and continuously EEG was recorded from all dyads when they completed a computer-based cooperative game task. Reaction times (RTs) and success rates were used to indicate the behavioral performance, and phase locking value (PLV) was used to indicate the inter-brain synchrony. The results showed that (1) Greater theta inter-brain synchrony during the cooperative computer game tasks was observed in the mindfulness group than in the non-mindfulness group; (2) Greater theta inter-brain synchrony was observed in the successful cooperation conditions as compared to those in the failure cooperation conditions; (3) Greater theta inter-brain synchrony was observed at the frontal region as compared to those at the parietal-occipital region in the successful cooperation condition. The results expand the neural basis of the effects of mindfulness on cooperation feedback processing. (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Atenção Plena , Retroalimentação , Eletroencefalografia , Consciência , Cérebro/fisiologia
16.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus, tab, graf
Artigo em Inglês | IBECS | ID: ibc-226369

RESUMO

In recent years several meta-analyses regarding resting-state functional connectivity in patients with schizophrenia have been published. The authors have used different data analysis techniques: regional homogeneity, seed-based data analysis, independent component analysis, and amplitude of low frequencies. Hence, we aim to perform a meta-analysis to identify connectivity networks with different activation patterns between people diagnosed with schizophrenia and healthy controls using voxel-wise analysis. Method: We collected primary studies exploring whole brain connectivity by functional magnetic resonance imaging at rest in patients with schizophrenia compared with healthy controls. We identified 25 studies included high-quality studies that included 1285 patients with schizophrenia and 1279 healthy controls. Results: The results indicate hypoactivation in the right precentral gyrus and the left superior temporal gyrus of patients with schizophrenia compared with healthy controls. Conclusions: These regions have been linked with some clinical symptoms usually present in Plea with schizophrenia, such as auditory verbal hallucinations, formal thought disorder, and the comprehension and production of gestures. (AU)


Assuntos
Humanos , Cérebro , Esquizofrenia/diagnóstico , Espectroscopia de Ressonância Magnética , Voluntários Saudáveis , Descanso/fisiologia
17.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. graf, ilus, tab
Artigo em Inglês | IBECS | ID: ibc-226373

RESUMO

Childhood trauma is a leading risk factor for adolescents developing major depressive disorder (MDD); however, the underlying neuroimaging mechanisms remain unclear. This study aimed to investigate the association among childhood trauma, MDD and brain dysfunctions by combining static and dynamic brain network models. We recruited 46 first-episode drug-naïve adolescent MDD patients with childhood trauma (MDD-CT), 53 MDD patients without childhood trauma (MDD-nCT), and 90 healthy controls (HCs) for resting-state functional magnetic resonance imaging (fMRI) scans; all participants were aged 13–18 years. Compared to the HCs and MDD-nCT groups, the MDD-CT group exhibited significantly higher global and local efficiency in static brain networks and significantly higher temporal correlation coefficients in dynamic brain network models at the whole-brain level, and altered the local efficiency of default mode network (DMN) and temporal correlation coefficients of DMN, salience (SAN), and attention (ATN) networks at the local perspective. Correlation analysis indicated that altered brain network features and clinical symptoms, childhood trauma, and particularly emotional neglect were highly correlated in adolescents with MDD. This study may provide new evidence for the dysconnectivity hypothesis regarding the associations between childhood trauma and MDD in adolescents from the perspectives of both static and dynamic brain topology. (AU)


Assuntos
Humanos , Masculino , Feminino , Adolescente , Transtorno Depressivo Maior , Trauma Psicológico , Encefalopatias , Experiências Adversas da Infância , Fatores de Risco , Imageamento por Ressonância Magnética , Cérebro/fisiologia , Inquéritos e Questionários
18.
Int. j. clin. health psychol. (Internet) ; 23(4)oct.-dic. 2023. ilus, graf, tab
Artigo em Inglês | IBECS | ID: ibc-226385

RESUMO

The ability to recognize others’ facial emotions has become increasingly important after the COVID-19 pandemic, which causes stressful situations in emotion regulation. Considering the importance of emotion in maintaining a social life, emotion knowledge to perceive and label emotions of oneself and others requires an understanding of affective dimensions, such as emotional valence and emotional arousal. However, limited information is available about whether the behavioral representation of affective dimensions is similar to their neural representation. To explore the relationship between the brain and behavior in the representational geometries of affective dimensions, we constructed a behavioral paradigm in which emotional faces were categorized into geometric spaces along the valence, arousal, and valence and arousal dimensions. Moreover, we compared such representations to neural representations of the faces acquired by functional magnetic resonance imaging. We found that affective dimensions were similarly represented in the behavior and brain. Specifically, behavioral and neural representations of valence were less similar to those of arousal. We also found that valence was represented in the dorsolateral prefrontal cortex, frontal eye fields, precuneus, and early visual cortex, whereas arousal was represented in the cingulate gyrus, middle frontal gyrus, orbitofrontal cortex, fusiform gyrus, and early visual cortex. In conclusion, the current study suggests that dimensional emotions are similarly represented in the behavior and brain and are presented with differential topographical organizations in the brain. (AU)


Assuntos
Humanos , Masculino , Feminino , Adulto Jovem , Adulto , Emoções , Expressão Facial , Imageamento por Ressonância Magnética , Comportamento , Cérebro/anatomia & histologia , Rede Nervosa
19.
Science ; 382(6674): 1026-1031, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38033080

RESUMO

Microsleeps, the seconds-long interruptions of wakefulness by eye closure and sleep-related brain activity, are dangerous when driving and might be too short to provide the restorative functions of sleep. If microsleeps do fulfill sleep functions, then animals faced with a continuous need for vigilance might resort to this sleep strategy. We investigated electroencephalographically defined sleep in wild chinstrap penguins, at sea and while nesting in Antarctica, constantly exposed to an egg predator and aggression from other penguins. The penguins nodded off >10,000 times per day, engaging in bouts of bihemispheric and unihemispheric slow-wave sleep lasting on average only 4 seconds, but resulting in the accumulation of >11 hours of sleep for each hemisphere. The investment in microsleeps by successfully breeding penguins suggests that the benefits of sleep can accrue incrementally.


Assuntos
Cérebro , Sono de Ondas Lentas , Spheniscidae , Animais , Regiões Antárticas , Olho , Spheniscidae/fisiologia , Vigília , Fatores de Tempo , Cérebro/fisiologia
20.
Curr Med Sci ; 43(6): 1084-1095, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37924385

RESUMO

OBJECTIVE: Post-stroke cognitive impairment (PSCI) develops in approximately one-third of stroke survivors and is associated with ingravescence. Nonetheless, the biochemical mechanisms underlying PSCI remain unclear. The study aimed to establish an ischemic mouse model by means of transient unilateral middle cerebral artery occlusions (MCAOs) and to explore the biochemical mechanisms of p25/cyclin-dependent kinase 5 (CDK5)-mediated tau hyperphosphorylation on the PSCI behavior. METHODS: Cognitive behavior was investigated, followed by the detection of tau hyperphosphorylation, mobilization, activation of kinases and/or inhibition of phosphatases in the lateral and contralateral cerebrum of mice following ischemia in MACO mice. Finally, we treated HEK293/tau cells with oxygen-glucose deprivation (OGD) and a CDK5 inhibitor (Roscovitine) or a GSK3ß inhibitor (LiCl) to the roles of CDK5 and GSK3ß in mediating ischemia-reperfusion-induced tau phosphorylation. RESULTS: Ischemia induced cognitive impairments within 2 months, as well as causing tau hyperphosphorylation and its localization to neuronal somata in both ipsilateral and contralateral cerebra. Furthermore, p25 that promotes CDK5 hyperactivation had significantly higher expression in the mice with MCAO than in the shamoperation (control) group, while the expression levels of protein phosphatase 2 (PP2A) and the phosphorylation level at Tyr307 were comparable between the two groups. In addition, the CDK5 inhibitor rescued tau from hyperphosphorylation induced by OGD. CONCLUSION: These findings demonstrate that upregulation of CDK5 mediates tau hyperphosphorylation and localization in both ipsilateral and contralateral cerebra, contributing to the pathogenesis of PSCI.


Assuntos
Cérebro , Disfunção Cognitiva , Animais , Humanos , Camundongos , Cérebro/metabolismo , Cognição , Disfunção Cognitiva/etiologia , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Glicogênio Sintase Quinase 3 beta/metabolismo , Células HEK293 , Isquemia , Proteínas tau/genética , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...